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RESUME 

On demontre quelques r6sultats concemant les ensembles de synth~se ou 
de r~solution spectrale dam les groupes abeliem localement compacts. 

§1. Introduction. Soit F un groupe localement compact, la loi de groupe de F 
sera not6e additivement, et soit G son dual (groupe des caract6res g de 1"). Un 
caract~re de F est une fonction continue born6e sur F, et nous noterons, par abus 
de langage, de la m~me fa¢on un 616ment de G e t  la classe dans L°°(F) de la 
fonction sur F qu'il d6finit. Soit V un sous-espace faiblement ferm6 invariant 
par translation de L~°(F), nous appellerons spectre de V l'ensemble a(V) des 
616ments de G qu'il contient. 

Le probl~me de la synth6se spectrale est le suivant: notant par Vt la sous-vari6t6 
de L°°(F), faiblement ferm6e, invariante par translation, engendr6e par les carac- 
t~res appartenants a or(V), V1 est la plus petite sous-vari6t6 de spectre a(V). Nous 
dirons que Vest une varidtd de synthdse spectrale si V = V~. Alors "la synth~se 
est possible" pour tout 616ment de V, c'est ~ dire que tout 616ment de V peut &re 
approch6 dans L°°(F) par des combinaisons lin6aires des caract~res appartenant 

a(v). 
Une caract6risation des vari6t6s de non-synth~s¢ spectrale semble diflicilement 

abordable; dans [2] P. Malliavin a montr6 l'existence des vari6t6s de non-synth~se 
sur un groupe ab61ien localement compact, non compact (la synth~se sur un 
groupe compact &ant toujours possible). On est ainsi amen5 h travailler sur une 
notion plus restrictive que celle de synth~se spectrale: on appeUe "varidtd de rd- 
solution spectrale'" une vari6t6 faiblement ferm6e V, invariante par translation, 
telle que toute sous-vari&6 de V ferm6e, invariante par translation, soit de 
synth~se spectrale. 

Notations. Nous noterons comme d'habitude It tl~ et 11 "'" II1 les normes 
dans L~°(F) et L'(F) resp., MI(F) notera l'alg~bre des mesures born6es sur F, et 
nous noterons encore II "'" I11 la norme darts MS(F). 

Le produit de convolution dans le groupe F, sera not6 par un simple point, 
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et nous 6crirons 6galement e "a pour l'exponentielle de convolution de a dans F, 
e t a  "2 pour le carr6 de convolution de a. 

Le produit de convolution dans le groupe additif des r6els sera, lui, not~ par une 
6toile ( * ). 

Enfin, soit (I) un 61~ment de L~°(F), nous noterons ((I)) la sous-vari~t6 fe rm~ 
engendr6e par (I) et ses translat6s. 

1.1. Uaieit6 et r6salation speetrale. Soit V une vari6t6 ferm~e invariante 
par translation dans L~°(F), nous 6tudierons la synth~se spectrale dans cette varlet6 
en relation avec la d6croissance gt l'infini des 616ments de V. 

DI~FINITION 1. Nous appellerons L~ (F) l'espace des fonctions de L°°(F) qui 
"tendent vers 0 ~t l ' infini", c'est h dire l'espace des fonctions (I)~ L°°(F) telles 
que quel que soit e > 0 donn6, il existe un compact K de F, tel que, si h x note la 

fonction caract6ristique de K, 11 (I) (1 - hr)ll ~o < ~. 
Nous aurons alors un th6or6me qui relie la notion de r6solution spectrale 
celle, mieux connue, "d'ensemble d'unicit6". Rappelons que, soit F u n  groupe 

localement compact et G son dual, on appelle ensemble d'unicit6 un ensemble 
ferm6 E c G, tel que si (I) e L~(F), et que le spectre de ((I)) est dans E, alors (I) est 
nulle. Nous dirons qu'un ensemble ferm6 E c G, est de r6solution spectrale si il 
n'est le spectre que d'une vari6t6 de L°°(F), et que cette vari6t6 est de r6solution 
spectrale: 

THI~ORf~ME 1. Duns un groupe localement compact G, tout ensemble de rd- 
solution spectrale est un ensemble d' unicitd. 

Ce r6sultat a 6t6 ddmontr6 par P. Malliavin dans [3], dans le cas off le groupe G 
est le tore ~t une dimension C. 

1.2. D6eroissanee h l'intini. Pour 6tudier la d6croissance ~ l'infini d 'un 
616ment de L°°(F), nous utiliserons les notions suivantes: 

D~F1NmON 2. On appelle "suite d'unit6s approch6es de/.1(1) ' '  une suite ~ de 
fonctions de LI(F), de normes 1, positives, telles que pour toute fonction sur F, a, 

support compact et continue, j'ra~ld~ (d~ mesure de Haar sur F) tende vers 
a(0) quand i tend vers l'infini (0 6tant l'616ment neutre de F). 

Nous savons que de telles suites existent si et seulement si F a une base d6- 
nombrable de voisinage de l'616ment neutre. 

Etant donn~e une suite d'unit~s approch~es, ~ une fonction • e L®(F), et ~ tout 

> 0, on associe les ensembles 

(1.1) 

(1.2) 

A , [ ¢ ,  {~o,}] = {7 e r/lim sup (¢ .  9,)(~) > ,} 

B~[O, (~,}] = A,[¢,  {T,}] - A,[O, {91}]. 
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Une autre mani6re canonique, mais moins fine, d'6tudier la d6croissance 
/~ l'infini de • est: 6tant donn6e une base d6nombrable ~ de voisinages ouverts 
de l'616ment neutre de V, on pose: 

dO(y) = lim sup [I O(x)hv(x - 7)[1 ~o 
V¢~ll 

(ot~ hv est la fonction caract6ristique du voisinage ouvert V). 
Nous consid~rerons alors les ensembles: 

(1.1') .4,(O) = {7 E F/dO(y) > e} 

(1.2') /~,(O) = L (O)  - L ( O ) .  

Remarquons que si ia fonction • est continue ces deux notions coincident, 
(c'est ~ dire que A~(O, {%}) = .4~(O)), et que les 616ments de L~(F) sont les fontions 
• de L~(F), dont les A~(O,(%}) et les ,~'~(O) sont relativement compacts. 

1.3. Enonc6 ties r6suitats. 
PROPRII~TI~ (P). Un ensemble B darts F poss~de la propri6t6 (P), si, quel que 

soit le nombre entier N, et quel que soit un nombre fini d'616ments Yi de F, on peut 
trouver un 61~ment y e F dont tousles multiples non nuls d'ordre inf6rieur en valeur 
absolue ~t N n'appartiennent pas ~ Wi(B + y~). 

TrI~,ORi~ME 2. Soit F un groupe localement compact, ayant une base d(nom- 
brable de voisinages de l'origine, soit • ~ L°°(F); supposons qu'il existe une suite 
d'unitds approchdes % telles que les ensembles Be(O,{9i}) possddent pour tout 
e > 0 la propridtd (P), alors (0) n'est pas de rdsolution spectrale. 

THI~ORI~ME 2'. Soit F un groupe localement compact, ayant une base dd- 
nombrable de voisinages de l'origine, soit OEL°°(F); supposons que pour tout 
e > O, les ensembles B,(O) vdrifient la propridtd (P), alors (0) n'est pas de rd- 
solution spectrale. 

THI~OR[ME 3. Soit dans un groupe localement compact F, une varidtd V 
fermde invariante par translation de L°°(F), telle que V ~ Lo(F  ) # {0} alors V 
n'est pas de rdsolution spectrale. 

Le th6or~me 1 6nonc6 plus haut n'est, bien entendu, que la forme (un peu moins 
pr6cise) que prend le th6or~me 3 si on le traduit, par dualit6, en termes d'en- 
sembles dans le dual G de F (en regardant les spectres de nos vari6t6s). C'est sous 
ia forme du th6or~me 3 qu'il sera d6montr6. 

THi~OR~.ME 4. Considdrons le groupe Z"; soit O~L~°(Z ") telle que les en- 
sembles ~ ( 0 )  soient pour tout e > 0 de "densitd in/drieure" nulle, alors (0) 
n'est pas de rdsolution spectrale. 
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Rappelons que si B c Z  ~, on appelle "densit6 inf&ieure" de B la limite in- 
f&ieure du rapport [B N Kpl l  -~ o~ est le cube des 616ments de coordon- 
n6es, dans Z ~, toutes inf6rieures h pen valeur absolue, et } A I le nombre d'616ments 
de A c Z ' .  

Enfin nous d6montrerons, comme corollaire du th6or~me 4, le 

THI~OR~ME 5. Dans le tore d u n e  dimension C, l'ensemble de Cantor n'est 

pas de rdsolution spectrale. 
Ce r6sultat (qui a 6t6 montr6 ind6pendamment par Kahane et Katznelson dans 

[1]) donne alors un exemple d'ensemble d'unicit6 (l'ensemble de Cantor 6tant 
d'unicit6, cf. 15]) qui n'est pas de r6solution spectrale. 

§2. D6monstration du th6or~me 2. 
La d6monstration de ce th6or~me se fera en deux temps: 
- -  un premier lemme montrera que si il existe une fonction ¢I)E L~°(F)et une 

fonction a ~ U ( F )  telles que II  11 (1 + lul) soit int6grable (en la variable 
r6elle u), alors (~) n'est pas de r6solution spectrale. 

- -  nous construirons ensuite explicitement, lorsque • v&ifie les hypotheses du 
th6or~me 1, une fonction a ~ L~(F), qui avec • v6rifie les hypotheses du lemme 
pr6c6dent. 

2.1. LEMME. 1. Soit F un groupe localement compact, supposons qu'il  existe 
une mesure bornde a ~ MI(F), et une fonction dp ~ L~(F), telles que 

(2.1) f 
+ o o  

lie "s... * I1 (1 + lul)du < + oo 
- - 0 0  

alors il est possible de trouver une constante c r~elle, telle qu' en posant b = a + c6 

(6 ~tant la mesure de Dirac ?t l'dldment neutre d e  F), la fonction de L°°(F) 
¢ +  ~ o /  " iub 

qs = J-~ote • O)udu vdrifie 

(2.2) b .  ~P ¢: 0 

(2.3) b . b . ' I '  = 0 

(dp) n' est pas de rdsolution spectrale. 

D~mostration. Remarquons d 'abord que la relation (2.1)est aussi v&ifi~ en 
rempla~ant a par b, car e "~'b = el'Ce "l', et el '%st un nombre de module 1. 

Soit F(x) une fonction de la forme 

(2.4) F(x) = P(x)e -x2, 

ofa P e s t  un polyn6me; alors F(u) (transform6e de Fourier de F(x)) d~ro i t  
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/t l'infini comme ]u [%1" n &ant le degr6 de P). Cette fonction &ant enti~re, 
nous pouvons d6finir la mesure born6e F(b). D'autre part, la fonction de R 
/t valeur darts l'espace de Banach MI(F), e "iub l~(u) est continue et de norme 
int6grable ([le'~Ublll <el~lllbll~), elle est done int6grable; soit I son int6grale, 
et g un caract6re de F, on a: 

(1 ,g)  = (e "Ub, g)P(u)du = e 
- -  - -  QO 

qui est 6gal d'apr~s la formule d'inversion de Fourier h 2zF((b,  g)). Nous avons 
d0nc: 

(2.5) F(b)= l/2n f_~e "b P(u)du 

u e .l~b. • est une fonction /t valeur vectorielle dans L°°(F) continue et de norme 
int6grable, done int6grable dans L°°(F), soit 

~,+~ 
(2.6) q / = |  (kl,b .O)udu,  o n a :  

J -  O0 - -  

F(b) " • = 1/2n "iubl~(U) du (d ub " ¢)t  dt. 
c o  

Or la fonction de R 2 dans L°°(F), (u, t) ~ e "ttu+t)b • ¢, est continue et sa norme est 

major6e par le produitl[e'"bl],l]~ ''b "O lifo, done ~(u, O e(u)t  est int6grable, et 
d'apr~s Lebesgues-Fubini on a: 

W = 1/2nL2 (e "'`u+°b • ~ ) P ( u ) t d u d t  F(b) " 

soit en posant v = u + t et en appliquant encore Fubini 

2.7) F(b)" • = ~ ) ( P  * f ) (v)dv 

f ( O  = v. 

- - X 2  

1) Prenons F(x) = xe  , P(u) = u e-"'/4( ~ )  et son produit de convolution 
avec la fonetion f est une constante ~gale ~ 27r. Done 

b" e "-~" • = (e "~b .O)du, 
o o  

soit: 

b ' e ' - b ~ ' ~  = f ~  (e"'u"'O)e " ~ d u . _  

Mais e "v'°- • &ant une fonction continue non nulle ~ l'origine (4  &ant suppos6e 
non nulle), elle ne peut pas ~tre orthogonale h toutes les fonctions e ~u~ pour c r6el 
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quelconque,  donc  il est possible de trouver c tel que b • e "-b2 • tF ne soit pas 

nul ce qui entraine: 

(2.2) b .  • # 0. 

2) Prenons maintenant  F ( x ) =  x2e - ' ' ,  sa transform6e de Fourier  est 

r ( u )  = x/n-72(u2/4 - 1)e -"21+ dont  le produit  de convolut ion avec f est nul, done  

b • b • e "-b2 • qJ est nul, et en convolant  par e "b2, on a:  

(2.3) b . b .  W = 0. 

3) b • W 6tant diff6rent de z~ro, il existe une fonction ~eLI (F )  telle que 

• b • W # 0;  par contre (2.3) entraine que l'id~al engendr6 par ~. b • ~ • b dans 

L~(F) est or thogonal  b. W, done que les caraet~res de F contenus dans (W) sont 

o r thogonaux  ~ 8 • b • e • b e t  donc  ~ e • b: ceci entraine alors que ces caract~res 

ne peuvent  pas engendrer (qa). 

Enfin tF appar tenant / t  (q~), (~F) est inclus dans (q)) et: 

(oo) n' est pas de r~solution spectrale. 

2.2. LEt, rME 2. Soit • un Jldment de L°°(F), vdrifiant les hypothdses du 
thdordme 2, alors il existe une mesure born& a sur F, telle que: 

f T ,e  + ++ 
D6monstration. Nous  allons construire cette mesure a en choisissant con-  

venablement une suite (?k) d'616ments de F, et en prenant  

(2.8) a = ~ k-2(1/2i)(3~k -- cS_a k) 
k 

ofl si 7 e F, 6~ note  la mesure de Dirac au point  ?. 
Nous  serons amen6s, pour  v6rifier que notre mesure a satisfait (2.1)/t utiliser des 

• e t de .t,/2) tea-e -a ) majorat ions  des coefficients du developpem n e en somme de 

mesures discr~tes de masses 1, c ' e s t / t  dire les coefficients du d6veloppement en 

s~rie de Fourier  de e +" ~r, <r,~>, que nous allons donner  maintenant.  

2.2.1. Majorations de fonetion de Bessel. Soit ~, un 616ment de F, nous 
noterons  par  r(7) l 'ordre  de ~,, c 'est  ~ dire le plus petit entier positif  n tel que 

n • ? = 0. La fonetion e ~'jm~r'~> se d6veloppe en fonct ion uniquement des carae- 

t~res de G appar tenant  au sous-groupe engendr~ par  7, et dont  les coefficients 

de ce d6veloppement se calculent en se pla~ant dans le sous-groupe engendr6 par  ?, 

art lieu de F, et son dual au lieu de G, ils ne d6pendent done  que de l 'ordre  de 7. 

Nous  avons les d6veloppements suivants: 

(2.9) e +'°~<r'g> = ~ Ps.,(u) (mr,  g )  
m ~R(~) 

(2 .10)  e "(u/2)(~r-#-r) --- ~ Pm,r(U)t~mr 
rn + R(O 
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en posant R( + oo) = Z = groupe des entiers 

R(r) = Z/rZ si r < + oo 

(par abus de langage, nous noterons par la mSme lettre un 616ment de Z/rZ et la 
classe des entiers modulo r correspondants). 

Nous noterons P,,co par P~; les coefficients sont donn6s par les formules: 

1 ~ 2~ = e l .  sin x e - inx P.(u) ~ J o dx 

k = r - 1  

em,r(u) = ~ (1/r)e ~.a~(2~k/,) e-~2~k/', v e m. 
k = O  

Soit C le tore ~ une dimension, dont le dual est Z, le sous-groupe de C form6 
par les e ~2~/' a pour dual Z/rZ; en calculant le d6veloppement de e tusinx dans le 

groupe C aux points x = 2nk/r on a: 

e~. s in(2~klr)  -~ 2 P~(u)e 12~vklr 

v e Z  

= ~ [ ~  P , (u) le  '2~k'/" 
m e Z / r Z  k v c m  J 

d'o~t la formule: 

(2.11) P., ,(u) = E P,(u). 

Nous avons les majorations suivantes: 

(2.12) IP..Xu) l _-< 1 quel que soit u, r et m ~ R(r), 

majorations qui sont 6videntes d'apr6s les formules du calcul explicite de ces 
coefficients. 

La d6riv6e seconde de e ~"'si"x e s t  -eiU'sinx(u2cos2x÷iucosx) dont les 

coefficients de Fourier sont major6s par (lu12 ÷ I.I), or ces coefficients sont 
Pfln z, donc on a: 

(2.13) I p,(.)l z (1.12 + lul)/n ~ pour n ~ O. 

On tire de cette majoration deux cons6quences immMiates dont nous aurons 

besoin: 

(2.14) ~ IP..,(u)l <_ r, IP.(,)l ___ 1 -I- A(I,I 2 ÷ I~1). 
m (r )  n e Z 

Soit d un nombre entier positif, soit m 8 R (r), nous dirons que m est sup6reur 

en valeur absolue h d et on note Iml > d si quel que soit v~mlvl > d. D'autro 

part, I ml---d notera la proposition contraire de I ml > d. Alors pour R > 0 
donn6, quel que soit r, fini ou infini, et quel que soit I u [ < R, pour tout e > 0 
donn6, il existe un entier positif d tel que: 
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(2.15) • [Pm,,(u)[ <n.  
Iml>a 

Enfin quel que soit r >  2, nous avons si 1 ¢ m (m 616ment de R(r)) 

(2.16) Ie.,.(u>l =< Ieo(u)l + x IP.(u)l  
Ivl _~ 2 

Comme nous avons de plus Po(0)= 1, et P~(0)= 0, il existe un nombre positif 

¢o tel que I P,(,01 < Ieo(u) l si l u I < ¢o, donc l'in6galit6 (2.16) est valable pour 
tout 616ment m de R(r) mais en imposant cette fois-ci la condition [ u[ < Go. 

Consid4rons alors la somme ~l~l-> 31P~(u)l: pour Ivl >__ 3, les deux premi6res 
d6riv6es de Pv(u) ~ l'origine sont nulles, et la s6rie des modules des d&iv6es 
troisi6mes des Pv(u) est une s6rie normalement convergente (s6rie des coefficients 
de Fourier de - i sin3x e~'i"x); nous avons donc pour [u I < 1: 

x IP~(u)l < lul ~ 8 (oa 8 est une constante positive). 
Ivl > 3 

Les d6riv6es ~ l'origine de Po(u) et P 2 ( u )  sont nulles, la d6riv6e seconde en 
u = 0 de Po(u) est - 1, et celle de P2(u) est 1/4; commelPo(O) I + XI~ I _ 21P~(O)I = 1, 
il existe un nombre ~ < 1, et un nombre ¢, 0 < ~ < ½ Go tels que: 

(2.17) IP , , . , (u ) l<~pourr>2 ,  mquelconque, e t ~ < l u l < 2 ¢ .  

2.2.2. Estim~e de normes par r6gularisation. 
Soit (~3 la suite d'unit6s approch6es de L~(F), nous devrons d6duire une majora- 

tion de normes de certaines expressions d6pendant de ~,/L partir de majorations 
sur les normes d'expressions analogues oh q) est remplac6 par l 'une de ses r6gu- 
laris6s q~. V~ (q~- V~ sera toujours not6 dans la suite par ~3;  c'est pourquoi 
n ous d6montrerons ici le lemme suivant: 

LEMME 3. Soit (~i) une suite d'unitds approchdes de U(F), soit ~ e L ~ ( F )  
et supposons queen tout point ~ de F on ait 

lim supl.,(r~ I ___ 1 

a l o r s  I1"~ II-- 1 
D6monstration. Soit ~ une fonction continue d support compact K c F, cp~ • 

converge, en norme dans U(F), vers ~: en effet, soit V un voisinage compact 
de l'616ment neutre 0, et soit 9,v les restrictions ~t V des fonctions 9,, II ~ , -  ~,. I1~ 
tend vers z6ro quand i tend vers l'infini, doric (9~ - 9~v) " a converge vers 0 darts 
LI(F), et 9~ir. • ~ converge dans LI(F ) en norme vers ~({9~v " ~} ~tant un ensemble 
de fonctions uniform6ment 6quicontinues ~ support dans un compact fixe, con- 
vergeant ponctuellement vers ~). 

La norme dans L°°(F) de ¢ est la borne sup6riere pour toutes les foctions 
continues ~ support compact de norme 1 dans L~(F) de [ (~ , , c ) l ;  de plus 
( ¢ , ~ )  est la limite de (¢~,~), quand i tend vers l'infini, car 
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(O,,ct) = (O,- ~)(0) = (O.  ~, .  ~)(0) (o/l ~ d6signe ~(y) = ct( - y)) 

et Oi " 0t converge dans L1(F) vers ~. 
Notons alors Sp(e) l'ensemble des y ~ F tels que quel que soit i>  p; < 1 + e 

(e > 0 arbitrairement donnO. La r6union des Sp(e) est tout F. Soit une fonction 
continue h support compact de norme 1 dans L~(F), la mesure de K c3(S~,(e) 
tendant vers 0 quand p tend vers l'infini, il existe Po tel que l'integrale de ~ sur 
Spo(t ) soit inf6rieure h e. Nous avons: 

=( + ( 
J Spo( O ,J(Spo(~)) 

o~ la premiere int6grale peut ~tre major6e, en module par le sup de O~ sur Spo 
et la deuxi~me pa re  multipli6e par t[ O,{I °o (qui est inf6rieure it O o0; doric si 
i>->_po, ( O i , ~ ) [ < l + e ( l +  • oo). Comme ( O i , ~ ) t e n d  vers (O,~) ,  nous 
avons (O,~)  < l ,  e tdonc  • ~ < 1 .  

2.2.3. Construction de la suite (Yk)" 
Soit (t/k,~) une double suite de nombres positifs tels que: 

2 

(2.18) r I  (1 + qk.q) - 1 < e - '  
k>q 

nous savons que quel que soit r, fini ou infini, il existe (cf. (2.15)) pour tout q, 
une suite (dq(k)) d'entiers croissants tels que: 

(2.19) ~ [p.,,(u) I < qk,, pour [u [ < q, et quel que soit r, 
Iral >dq(k) 

nous prendrons les entiers dq(k) croissant en fonction de q 6galement. 
Soit alors e(k) = It • tloo/8 ~. ]-Ii__<k+ ~ dk+ 1(0 et e(0) = }] • t[~ nous noterons plus 

rapidement 
Ak = 

On prend ?~ de telle faqon que ses multiples non nuls jusqu'/l l 'ordre 2d1(1) 
n'appartiennent pas h B~. 

On prend alors Y2 de telle faqon que ses multiples non nuls jusqu'it l'ordre 
2d2(2) n'appartiennent pas h la r6union prise pour ]nl I < 2d2(1) de (B2 + nlYl). 

On prend alors y~ tel que ses multiples d'ordre inf6rieur (en valeur absolue) it 
2d,(p) n'appartiennent pas it la r6union pour I n, ] £ 2d,(i) et i < p de (Op + ~,, ny,). 

Cette construction est possible car tous les Bp poss~dent la propri6t6 (P). Nous 
noterons r k = r(Yk) = ordre de Yk 

R~ = R(rk) = t Z = le groupe des entiers si r~ = + oo 
[Z/rkZ si rk < + ~ .  
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Nous noterons D(q) l'ensemble des 61gments 0 de D tels que O(k) = 0 si k < q 
et F(q) l'ensemble des 616ments de D(q) de k i~me -composante infdrieure en valeur 
absolue it dq(k) pour tout k ([0(k)[ < dq(k)). 

Soit N u n  entier positif plus grand que q, nous noterons D(q, N) et F(q, N) les 
ensembles des restrictions aux k < N des 6ldments de D(q), respectivement F(q). 

Un entier q 6tant fix6, quel que soit ~ e F, il y a au plus 

(2.20) 4" l--I dq(k) 
k<p 

416ments O(k) de F(q) tels que l'414ment ~ + ~k 0 (k) Yk e Ar  En effet la diff4rence 
de deux tels 614ments doit appartenir ~ Bp, et est de la forme ; / =  ]~k nk~k (O4 on a 
pos4 nk = 01(k) - 02(k), 01 et 02 4tant deux 414ments de F(q)) avec nk nul pour 
k < q et Ins ] < 2dq(k). Nous aurons le d6nombrement (2.20), si nous montrons 
que nk est nul pour k > p: supposons qu'il existe des nk non nuls avec k > p, 
et soit n u celui qui a le  plus grand iudice (alors Nes t  sup4rieur/t p, et aussi/t q, car 
nk = 0 si k _<- q). Nous aurions alors 

~ ,  nk]~ k --- ~' ~ Bp = B N (car N > p) et 
(2.21) k 

nN'Ne (BN -- k~ N nk'k) 

or [nkl < 2d,(k), et comme N > q, Inkl < 2dN(k), ce qui est en contradiction avec 
(1.21) d'apr~s la construction de notre suite 0k). 

2.2.4. Majoration de [1 e .i,,. tI)I1~ 

Nous noterons par z(?)~ la fonction translat6 de ~ de ?, c'est g dire fir " ~ 

(2.22, e""= kFI • [ L ? , , , k ( k -  2u)6,,k ] 

ofl I-I " repr6sente un produit de convolution. 

2.2.4.1. 
a est la somme d'une sdrie convergente, soit N un entier, notons par an la somme 

des N premiers termes de cette s6rie, et r N la somme des autres termes, pour u 
donn6, il existe un entier N O tel que II rN H' < 1/lu I pour tout N > N o. 

Choisissons alors N sup6rieur h la fois ~t No, et ~t x/I ul/2~ oa ~ est le hombre 
intervenant dans la majoration (2.17) (l'utilit6 de prendre N > ,4rl u[/2~ sera rue 
dans 2.2.4.3.). Posons 

a=aN+r  N 
e "Juan_ e "luaN" e "iUrN 

et on a :  

(2.23) U e " ' "  I[' < e. 
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2.2.4.2. 
Prenons l'entier q tel que qa<[u l<  (q + 1) 3 , alors pour tout k > q, on a 

(2.24) I k -Zu I < q" 

Nous allons d~composer alors e "i"Nde la fa~on suivante" 

k < q  m k 

q < k < N  m e R k  L J 

(N 6tant au moins de l 'ordre de lul 1/2, e ta  6tant de l 'ordre de lut l/a, d~s que lul 
est assez grand on a N > q~ ce qui donne un sens/l notre d~composition). 

Nous savons d'apr~s la majoration (2.14) que quel que soit r on a: 

E < + : ( l v l  2 + tvl) 
m ~ R(r) 

donc 
(2.27) 1[ Lqlll <(1 + A(lul2+lul ) )q<cexp(plu[ l /SLoglul )  

(c et p 6tant deux constantes positives convenablement choisies.) 
Et nous avons 6galement: 

(2.28) Ile"".~,f l~<=lle", ,"ll , l lgol!lIlM,, . .[l~ 

c'est cette derni~re norme que nous avons maintenant/~ majorer. 

2.2.4.3. 
Nous avons 

M,,,q " ~ = l-[ 
q < k < N  

d'ofi, en d6veloppant ce produit: 

(2.29) Mq, N. . = ]~ [ 
q e D ( q , N )  

Posons alors: 

(2.30) Sq,u = ]~ [ 1--I 
EF(q ,N)  q < k < N  

(2.31) Tq,N = ~' [ 1-I 
ot~E(q ,N)  q > k < N  

q < k < N  ~,k 

off E(q, N) est le complfmentaire de F(q, N) dans D(q, N); alors 

(2.32) M q , N  " ~ = Sq,N + Tq.N. 

Pour majorer la norme de S#,N nous allons trouver une majoration ind6pendante 
de i (d6s que i sera assez grand) du module de 
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(2.33) S~(~) = ~ [ 1--I P~(k),rk(k-2u)~i(~- ~ ~(k)~)] 
q~F(q,N)  L q<k<N k _l 

(ofa (I)~ est • • ~p~); cette majoration ne d6pendant, de plus, pas de ?, en utilisant 
le lemme 3 nous obtiendrons une majoration de la norme de S~. s dans L°°(F). 

Soit ~ e F donn6, soit q~ un 616merit de F(q, N), soit p~ = p(% y) l'entier tel que 
- ~,kq~(k)~k appartienne/t Ap~ n ".Ap~,-1, il existe un indice i~ = i(tp, y) tel que 

pour tout i > i~, ~(~ - ~k ~(k)~k) soit compris entre e(p~) et e(p~,- 1). F(q, N) 
est un ensemble fini, doric quel que soit i sup6rieur ~ tous les i, et quel que soit ~0 
appartenant ~t F(q, N), ~0' - ~,k ~(k)~k) est compris entre e(p~) et e(p~ -- 1). 

I1 exist6 an plus 4p 1-Ik<p dq (k) 616ments de F(q, N) tels que y -  ~k ~(k) ~k soit 
darts Al, n...Ao_ 1 donc tels que ~ l ( ~ -  ~,k~(k)~) soit compris entre e(p) et 

- 1). 
Soit s(u) le nombre d'entiers k tels que k > q, et ~ < [k-2u] < 2~ (cf. majo- 

ration (2.17)), nous pouvons majorer le produit I-[~<k<sP,~tR),,~(k-~u) par ~t,) 
N a 6t6 choisi sup~rieur ~ x/l l/2  (cf. 2.2.4.1), doric tousles k tels que I k -  ~u I < 2 
sont inf6rieurs ~ N, et s(u) est de l 'ordre de I u I ~/~' car il est compris entre So(U) 
et So(U)-q (o~ So(U) et le nombre d'entiers v6rifiant ~ < k-~u < 2~, ce qui 
donne So(U) de l 'ordre de [ul ~/~ alors que q est de l 'ordre de u I 1/~. 

Nous avons alors: 

Is,(e)l <¢'" z e(p)4 ~ I-[ d,(k)< I1 11  4( ~ 1/2") 
p k<p 

soit I Si(~)l < c~ e x p ( -  fl~lul ~/~) 

oO c~ et fl~ sont des constantes positives bien choisies; et done 

(2.34) II S~,r¢ II oo < ci e x p ( -  ~, I u I"~) 

2.2.4.4. 
I1 nous reste alors ~t majorer la norme de T~,s. 
Soit  G(q,N) l'ensemble des fonctions ~b(k) de D(q,N) telles que ~b(k) soit ou 

nul ou sup6rieur en valeur absolue h d~(k). Alors tout ~l~ment O(k) de E(q, N) se 
d6compose en somme d'une fonction ~(k) de F(q, N) et d 'une fonction ~,(k) de 
(q,N), cette d~composition &ant unique si on impose de plus la condition 
d'orthogonalit6 ~(k)@(k)= 0, on prend pour cela 

[-- O(k) si IO(k)l<=d~(k) 
~(k) ~ 0 sinon. 

O(k) = O(k ) -  

Nous d6composerons toujours les 616ments de E(q, N) de cette faqon. 
Nous allons alors calcuIer la somme (2.31) qui donne T~,n en regroupant les 

termes, correspondant aux fonctions O(k) ayant mSme composante sur F(q,N), 
~0(k), et en utilisant la formule 
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q<k<N ~(k)~0 ~(h) =0 
q<k<N 

nous avons: 

[ ,,+,] (2.36) T,.N I-I Pq,(k),,k( k 

oh S(~k) est d+fini par: 

(2.37) S(~, )%+r~.m[  ~,ol~)= ° P,(h).,,(h-2u)zC~.,~b(k)~'k+ ~.,~(h),h)ep] 
~¢=0 q<h<N 

S(~b) peut 6galement s'~crire: 

~l~(k)?, ,(h)=o ~(h)T4)@) ]" 
~0=0 q<h<N 

Nous majorerons alors ce terme comme nous avons major~ la norme de Sq. N 
dans 2.2.4.3., avec la diff6rence que nous ne pouvons ici majorer la valeur absolue 
du produit 

l'-I P,(h).,h(h-2u) 
~(h) ffi o 
q<h<bl 

que par 1, et que la sommation ne portant que sur une partie de F(q, N), notre 
m6thode de majoration de la norme de la somme de translates de (I), sera ~ fortiori 
valable; nous obtenons ainsi le r6sultat: 

(2.38) 

Enfin nous avons 

x [rI 
#/eG(q,N) I ~/(k),#O I 

=[ rI 
q<k<N 

II s(~)ll + < 8 II * II +. 

E1 + YI I p.,.~(k-'.)13]- 1 
lml >d,tk) 

et d'apr~s le choix de q (1 q-  2u I < q), et les in6galit6s (1.18) et (1.19), nous obtenons 

(2.39) II T+ ~II+ < 811+11oo e-q' ~ czexp(- ,= I.  I~,~>. 

2.2.4.5. 
La majoration de la norme de T~, N est n6gligeable devant celle de la norme 

de Sq,~, et nous avons done pour [le ""°. * [[o~ une majoration du type suivant: 

(2,40) II e.`-. +11~ < Cexp(~l u 1'/3 L°gl u I -  ~'[u[ 1:2) 
ce qui entraine, le terme en ]u I 1/2 ~tant d 'ordre sup6rieur au premier que Fin- 
tdgrale 
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converge. 

f +~ lie "fua" 4)]]oo(I + ]uJ)du 

2.3. D6monstration du th6or6me 2'. 
Ce th6or~me n'est qu'un affaiblissement du th6or~me 2, car nous avons la 

propri6t6: 

(2.41) ,4"~((I)) = A2,(4)). 

En effet, • 6tant donn6, soit ? E A 2 ,  , et soit V un voisinage arbitraire de 7, 
soit W un voisinage de l'origine de F, tel que W + W c V - ),; d'apr~s la con- 
vergence des 9i vers 6, il existe i o tel que pour i > io, la norme dans U(F) de q~ 
restreint au compl6mentaire de W soit inf6rieure h e/11 4)1[o~; comme ),~ A2~ il 
existe un i > i o tel que 19i '  4) 1(?) > 2e, et 91 " • 6tant continue il existe une 
fonction continue ~t ~t support compact inclu dans W, de norme 1 dans LI(F), 
telle que I ~ " ~0~ • (I)] (7) > 2~. Alors (la restriction de ~i au compl6mentaire de W 
6tant de norme inf6rieure h e/II 4)II ~o)la fonction fl, produit de convolution de 
et de la restriction 9~ ~ W, est continue, a son support dans V - 7 ,  et on a 
I fl" 4)[" (7) > e, ce qui entraine que II 4)v II oo > ~. Ceci &ant vrai quel que 
soit re voisinage V de ~, d4)(7) > e. 

§3. D6monstration du th6or6me 3. 
Soit 4) un 616ment de L~(F), pour tout 8 > 0 donn6 nous noterons A~(4)) le 

plus petit ferm6 tel que la norme de • restreint au compl6mentaire de A~(4)) soit 
inf6rieure ~ 8. Quand le groupe F a une base d6nombrable de voisinage de l'origine, 
les ensembles ainsi d6finis sont les .~'~(4)). 

Nous poserons B~(4))=A~(4))- A~(4)), et la propri6t6 de d'appartenir 
Lo(F) se traduit par le fait que les ensembles A~(4)) et B~(4)) sont compacts. Nous 
d6montrerons alors un lemme, qui, avec le th~or6me 2' d~montre le th6or6me 3 
darts le cas of 1 F a une base d6nombrable de voisinage de l'616ment neutre. 

3.1. LEMME 4. Dans un groupe localement compact non compact F, tout 
compact poss~de la propridtd (P). 

Nous allons utiliser le r6sultat classique suivant: 
Soit F un groupe locaIement non compact ab61ien, et soit U un voisinage 

compact sym6trique de l'unit6. 
Soit F '  le sous-groupe engendr6 par U, alors F '  contient un sous-groupe discret 

D engendr6 par un nombre fini d '616ments tel que F'/D soit compact. 
Nous allons traiter les deux cas suivants: 
a) F contient un 616ment ~'o d'ordre infini qui engendre un sous-groupe discret. 
b) Si on n'est pas darts les conditions du a), D est un groupe compact (engendr~ 

par un nombre fini d'616ments d'ordre fini), donc aussi F'.  F '  6tant engendr6 par u n 
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voisinage de l'origine, il est ouvert donc F/F'  est un groupe discret, soit H, dont 
tousles  616ments sont d 'ordre fini. 

La r6union d 'un  nombre fini de compacts 6tant compact, nous allons d6montrer 
que pour un compact K et un nombre entier positif arbitraire N i l  existe un 

616ment ? de F tel que tous ses multiples non nuls d 'ordre n avec [n I < N, soient 

hors de K. 
a) Soit (Yo) le groupe ~o " Z engendr6 par ~o; ou bien K ne rencontre pas (Yo) 

et le probl~me est r6solu en prenant y = Yo, ou bien K rencontre (Yo) et K n (~'o) est 

compact done fini; soit alors A le  plus grand des entiers tels que A. ~o E K n (~'o), 
il suffit de prendre pour y l'616ment (IAI + 1) 

b) l'image K '  de K par la projection F ~ F /F '  = H est compacte done finie, si 
t E F /F '  est tel que tous ces multiples non nuls et d 'ordre ] n [ < N ne sont pas 
dans K' ,  un repr6sentant y dans F de la classe t r6pond ~t la question. I1 suffit de 
traiter le probl6me dans le cas d 'un  groupe F discret dont tous les 616ments sont 
d 'ordre fini. 

Soit K une partie finie d 'un groupe discret infini; soit N u n  entier positif donn6, 
supposons que pour tout 616ment ~ F, 3 n < N tel que ny :P 0 et n~ ~ K;  en 
d'autres termes, soit K.  l'ensemble des y ~ F  tels que n y # O  et n T ~ K :  nous 

supposons que F = Un__<NK.. Alors soient 71 et Y2 deux 616ments de K.  avec 
n~q = n~'z leur diff6rence est d 'ordre inf6rieur ou 6gal h n, et appartient ~tl,.J,~_nK ~, 
donc appartient ~ un Kp avec p < n. Si nous supposons que tous les  Kp sont 
finis pour p < n, comme K est aussi fini, K.  est fini; or K1 = K est fini dans par 
r6currence Kp est fini quel que soit p; I,_J,_<NK. est donc fini, ce qui est contraire 

l'hypoth~se. 
3.2. Cas des bases non-d~nombrable de voisinages. Lorsque F n 'a  pas de base 

d6nombrable de voisinage de l'origine, il nous faut reprendre, pour une fonction 
appartenant ~t L~ (F) la d6monstration du lemme 2, qui s'6nonce sous la forme 
suivante: 

LEMME 5. Soit F u n  groupe localement compact, ¢P un dldment de L~°(F), il 
existe une mesure bornde a sur I', telle que 

Nous utiliserons ici, pour d6signer les quantit~s analogues ~ celles intervenant 
dans le lemme 2, les m~mes notations (aucune confusion n'~tant possible). 

Nous d~finirons une suite (~k) d'~l~ments, de F, comme dans 2.2.3., les ensembles 
A,(q~) jouant iei le r61e des ensembles A,(q~,(~0i} ) du lemme 2 (nous noterons 

encore Ak et Bk pour A~(k)(~) et B~(k)(~). Nous prendrons alors pour mesure a la 
mesure 

a = ~, k-2(1/2i)(6rk - ~-rk). 
k 
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Nous allons alors majorer la norme II e"U° '~ en proc6dant comme dans 
2.2.4: la suite d'unit6s approch~es, et la dffinition des ensembles Ak n'intervenaient 
que dans les deux majorations (2.34) et (2.38) o/1 les quantit6s S~.N et S(~k) sont 
d~finies par (2.30), et (2.37); nous allons montrer que, sous nos nouvelles hypo- 
theses, ces majoratios sont encore valables. 

Soit ? e F, et soit 9 un 616ment de F(q,N):  notons p, = p(y, cp) l'entier tel que 
- ]~k 9(k)~k appartienne ~ Ap n ...A o_ x. I1 existe alors un voisinage V(~,, tp) de 

tel que la norme de la restriction ~ V(~, 9) de ~( ~k 9(k)~)*  soit comprise entre 
e(p,) et e ( p , -  1). Soit V(?)l ' intersection des voisinages V(?, tp)quand q0 parcourt 
l 'ensemble fini F(q, N). 

Nous majorons comme dans 2.2.4.3. le module produit I II~<~< s P,<k).,~(k-2u) I 
par ~'(")(~ < 1, et s(u) de l 'ordre de ]u 11/2); comme il existe au plus 4 ~ VIk<pd~(k) 
~16ments 9 de F(q, N) dont le p,  soit 6gal A p, nous obtenons que la norme de la 
restriction ~t V(2:) de S~ u est major6e par 8 ¢ tl ~ * ~ ) ;  cette majoration ne d6- 
pendant pas du point y,'majore la norme I] Sq.s If , d o~ la majoration (2.34). 

Les termes S($) se majorent comme Sq.u, mais en majorant le coefficient 

11 P,(h).,,(h- ~ u) 
¢~(h) = o 
q<k<N 

en module par 1 ; ce qui nous donne bien la majoration (2.38). 

§4. Cas particulier du groupe Z" 

4.1. D~monstration du th~or~me 4. 

Ce th~or~me se d6duit du th6or~me 2/t  l'aide du lemme suivant: 

LEMME 6. Tout ensemble de densitd infdrieure nuUe dans Z", poss~de la 
propri~td (P). 

Nous pouvons donner une d6finition de la densit6 inf6rieure d 'un ensemble 
discret B dans R" de la fagon suivante: 

On appellera "densit6 inf6rieure" de B la limite inf6rieure quand x tend vers + oo 
du rapport I B n Jx ] (2x)-",  ot~ Jx est le cube des points de coordonn6es en valeur 
absolue inf~rieure ou 6gale ~ x, et ] A I est le nombre d'61~ments de A, si A est une 

pattie de R". 
Si nous injectons Z" dans R", les deux d6finitions de densit6s inf6rieures d'un 

sou-sensemble de Z" coincident. 
La propri&6, pour un sous-ensemble discret de R" d'etre de densit6 inf6rieure 

nulle est 6videmment stable par translation et par r6union finie. Soit x un nombre 
r6el, non nul et B un sous-ensemble discret de R ~, nous noterons xB l'ensemble 
des 616ments xb ofa b parcourt B; la propri~t6 d'&re de densit6 inf6rieure nulle 
est aussi stable par "multiplication" que un r6el non nul x. 

Soit alors B u n  sous ensemble de Z" de densit6 inf6rieure nulle, N u n  entier, la 



1965] VARIETE DE NON-SYNTHESE SPECTRALE 59 

r6union pour tout p < N du "quotient"  par p d 'un hombre fini de translat6s de B 
est darts R" de densit6 inf6rieure nulle, doric ne peut pas contenir Z, ~ donc B 
poss6de la propri6t6 (P). 

4.2. D6monstration du th6or6me 5. 
Pour d6montrer ce th6or~me, nous utiliserons la mesure dF sur C, oi~ F est la 

fonction de Lebesgue (Zygmund, Trigonometric series, 2~me 6dition, vol. 1, 
p. 196); cette mesure a pour support l'ensemble de Cantor; l'ensemble de Cantor 
est isomorphe, en tant qu'espace topologique au produit d 'une infinite d6- 
nombrable de Z/2 Z, et la mesure dF consid~r6e n'est autre que la transport6e 
par cet isomorphisme de la mesure de Haar de ce groupe produit. La transform6e 
de Fourier de dF est la fonction de L°°(Z) 

oo 

(4.1) ~(n) = ( -  1)n(2;r) -1 I-I cos(2~3-kn) 
k = l  

qui n'appartient pas/t L°~ (Z)(car ~(3n) = ~(n)), et dont le spectre est l'ensemble 
de Cantor. Le th6or~me r~sulte du lemme suivant: 

LEMME 7. Pour tout ¢ > 0 donn6, soit A l'ensemble des entiers tels que, 
IcP(n)l > ~, et soit B~ = A~ - A~, B~ est de densit~ nulle. 

Nous utiliserons l'6criture des entiers dans la base 9. Soit n un 616merit de A~ 
(oh e > 0 donn6), soit 

(4.2) 2n = %ctp_ l " "  0~1~o 

l'6criture dans le syst~me/i base 9 de 2n, la fonction ~(n) s'6crit: 

i = p oO oO 

(4.3) q)(n) = l-[ cos(n~q 0ti_ 1 ... %) 1-[ c°s(2nn3-(2k+1) 1-I cos(21rn3-2h) • 
i = 0  k = O  h = p  

Donc n ne pent appartenir /l A~, que si le premier produit est d6j/i de valeur 
absolue sup6rieure /t e; soit N(e) le plus petit entier tel que Icos(Tc/9)[ N(~) soit 
inf6rieur A e, s i n  appartient ~ A~ l'6criture darts la base 9 de 2n ne contient au 
plus que N(8) chiffres diff6rents de 0 et 8. 

Soit R un entier, posons 

(4.4) B~, R = B e ~ [ - 9 R, + 93]. 

S in  appartient/l B~,R, on a 

(4.5) n - - n  1 --n2 oh n~ et n2 appartiennent/t  A~. 

(4.6) n = n l - n 2  oh ln i l  et [nzl sont les testes de la division par 9 R+I 

de I ,1 et 1 21 
(4.5) provient de la d6finition de B~, et (4.6) du fait que nous supposons 
n ~ [ - 9 a, + 93]. De plus 2n~ et 2he ont dans leurs 6critures en base 9 au plus 
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N(~) chiffres diff6rents de 0 et 8, donc 2n~ et 2nz' ont dans leurs 6critures en base 9 
au plus N(e) + 1 chiffres diff&ents de 0 et 8. Le nombre d'616ments de Be,a sera 
donc inf6rieur au carr6 du nombre ha(e) entiers appartenant/t [ - 9 a+ t, + 9a+ t], 
dont l'6criture en base 9 contient au plus N(e) + 1 chiffres diff6rents de 0 et 8. 
O r  n o u s  avons." 

(N(e) + 1'~ 2R_N(O9mO+, (4.7) nR(e ) < 2  ~ R + I ] 

o6 ( ~ )  est le nombre de combinaisons de p 6Mments pris n ~t n.  
k- J 

Le hombre d'~16ments de [ - 9 R, + 9 R] tend plus vite vers l'infini que nR(8) 2 
donc B~ est de densitd nulle. 
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