VARIETE DE NON-SYNTHESE SPECTRALE
SUR UN GROUPE ABELIEN LOCALEMENT COMPACT

PAR
M. FILIPPI

RESUME

On demontre quelques résultats concernant les ensembles de synthése ou
de résolution spectrale dans les groupes abeliens localement compacts.

§1. Introduction. Soit I" un groupe localement compact, la loi de groupe de I’
sera notée additivement, et soit G son dual (groupe des caractéres g de I'). Un
caractére de I' est une fonction continue bornée sur T', et nous noterons, par abus
de langage, de la méme fagon un élément de G et la classe dans L™(T) de la
fonction sur I' qu’il définit. Soit ¥ un sous-espace faiblement fermé invariant
par translation de L™(I'), nous appellerons spectre de V I’ensemble a(V) des
éléments de G qu’il contient.

Le probléme de la synthése spectrale est le suivant: notant par ¥V, lasous-variété
de L™(I), faiblement fermée, invariante par translation, engendrée par les carac-
téres appartenants a o(V), V; est la plus petite sous-variété de spectre o(¥). Nous
dirons que V' est une variété de synthése spectrale si V = V,. Alors ‘‘la synthése
est possible’” pour tout élément de V, c’est 4 dire que tout élément de V peut &tre
approché dans L™(I') par des combinaisons linéaires des caractéres appartenant
aa(V).

Une caractérisation des variétés de non-synthése spectrale semble difficilement
abordable; dans [2] P. Malliavin a montré ’existence des variétés de non-synthése
sur un groupe abélien localement compact, non compact (la synthése sur un
groupe compact étant toujours possible). On est ainsi amené a travailler sur une
notion plus restrictive que celle de synthése spectrale: on appelle “‘variété de ré-
solution spectrale’’ une variété faiblement fermée V, invariante par translation,
telle que toute sous-variété de V fermée, invariante par translation, soit de
synthése spectrale.

Notations. Nous noterons comme d’habitude |- |, et ||+, les normes
dans L”(T) et L'(T) resp., M(T') notera I’algébre des mesures bornées sur T, et
nous noterons encore ” ” ; la norme dans M'(T').

Le produit de convolution dans le groupe I', sera noté par un simple point,
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et nous écrirons également e pour ’exponentielle de convolution de g dans T,
et a’? pour le carré de convolution de a.

Le produit de convolution dans le groupe additif des réels sera, lui, noté par une
étoile ( * ).

Enfin, soit ® un élément de L(T"), nous noterons (®) la sous-variété fermée
engendrée par © et ses translatés.

1.1, Unicité et résolution spectrale. Soit V une variété fermée invariante
par translation dans L(T"), nous étudierons la synthése spectrale dans cette variété
en relation avec la décroissance a I’infini des éléments de V.

DerniTion 1. Nous appellerons Lg (I') P'espace des fonctions de L®(T) qui
“tendent vers 0 a D'infini”’, c’est & dire ’espace des fonctions ® e L(T) telles
que quel que soit ¢ > 0 donné, il existe un compact K de TI', tel que, si kg note la
fonction caractéristique de K, | @ (| —hx) [« <e.

Nous aurons alors un théoréme qui relie la notion de résolution spectrale
3 celle, mieux connue, ‘“d’ensemble d’unicité’’. Rappelons que, soit I" un groupe
localement compact et G son dual, on appelle ensemble d’unicité un ensemble
fermé E < G, tel que st ® e Ly(T), et que le spectre de (@) est dans E, alors ® est
nulle. Nous dirons qu’un ensemble fermé E < G, est de résolution spectrale si il
n’est le spectre que d’une variété de L™(T), et que cette variété est de résolution

spectrale:

THEOREME 1. Dans un groupe localement compact G, tout ensemble de ré-
solution spectrale est un ensemble d’unicité.

Ce résultat a été démontré par P. Malliavin dans [3], dans le cas ol le groupe G
est le tore 4 une dimension C,

1.2. Décroissance a linfini. Pour étudier la décroissance a Dinfini d’un
élément de L™(I"), nous utiliserons les notions suivantes:

DErNITION 2. On appelle ““suite d’unités approchées de L'(T)” une suite ¢, de
fonctions de L}(I'), de normes 1, positives, telles que pour toute fonction sur T, o,
a support compact et continue, f rapdy (dy mesure de Haar sur I') tende vers
«(0) quand i tend vers I'infini (0 étant I’élément neutre de I').

Nous savons que de telles suites existent si et seulement si I' a une base dé-
nombrable de voisinage de 1’élément neutre.

Etant donnée une suite d’unités approchées, 2 une fonction ® e L), et & tout
¢ > 0, on associe les ensembles

(L.1) A,[0,{p}] = {yeT/limsup(® - @)(y) = ¢}
(12) Be[q)’ {(pi}] = Ae[(b’ {99:}] - Ac[(p’{(tvi}]
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Une autre maniére canonique, mais moins fine, d’étudier la décroissance
a Pinfini de ® est: étant donnée une base dénombrable # de voisinages ouverts
de I’élément neutre de I', on pose:

do(y) = limsup | O(x)hy(x = ) |
Ve

(ol hy est la fonction caractéristique du voisinage ouvert V).
Nous considérerons alors les ensembles:

(L) A(®) = {yel/dd(y) 2 ¢}
(1.2) B(®) = A(D) —AD).

Remarquons que si la fonction @ est continue ces deux notions coincident,
(c’est & dire que A,(®, {p;}) = A(®)), et que les éléments de Ly (") sont les fontions
® de L*(T), dont les A,(®,(¢;}) et les A,(®) sont relativement compacts.

1.3. Enoncé des résultats.

PrOPRIETE (P). Un ensemble B dans I' posséde la propriété (P), si, quel que
soit le nombre entier N, et quel que soit un nombre fini d’éléments y; de T, on peut
trouver un élément y € I' dont tous les multiples non nuls d’ordre inférieur en valeur

absolue a N n’appartiennent pas 3 U(B + y,).

THEOREME 2. Soit I' un groupe localement compact, ayant une base dénom-
brable de voisinages de I’origine, soit ® € L*(T); supposons qu’il existe une suite
d’unités approchées ¢; telles que les ensembles B(®,{®;}) possédent pour tout
e > 0 la propriété (P), alors (®) n’est pas de résolution spectrale.

THEOREME 2. Soit T' un groupe localement compact, ayant une base dé-
nombrable de voisinages de origine, soit ® e L°(T'); supposons que pour tout
¢ >0, les ensembles B(®) vérifient la propriété (P), alors (®) n’est pas de ré-
solution spectrale.

THEOREME 3. Soit dans un groupe localement compact T, une variété V
fermée invariante par translation de L°(T), telle que V N L3 (T) # {0} alors V
n’est pas de résolution spectrale.

Le théoréme 1 énoncé plus haut n’est, bien entendu, que la forme (un peu moins
précise) que prend le théoréme 3 si on le traduit, par dualité, en termes d’en-
sembles dans le dual G de I" (en regardant les spectres de nos variétés). C’est sous
la forme du théoréme 3 qu’il sera démontré.

THEOREME 4. Considérons le groupe Z"; soit ®e L*(Z") telle que les en-
sembles B(®) soient pour tout ¢ >0 de “densité inférieure’” nulle, alors (®)
n’est pas de résolution spectrale.
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Rappelons que si BcZ", on appelle ‘“‘densité inféricure”’ de B la limite in-
férieure du rapport |BN K, || K,| ™" o K, est le cube des éléments de coordon-
nées, dans Z”, toutes inférieures 4 pen valeur absolue, et ] Al le nombre d’éléments
de A cZ"

Enfin nous démontrerons, comme corollaire du théoréme 4, le

THEOREME 5. Dans le tore & une dimension C, I’ensemble de Cantor n’est
pas de résolution spectrale.

Ce résultat (qui a été montré indépendamment par Kahane et Katznelson dans
[1]) donne alors un exemple d’ensemble d’unicité (I’ensemble de Cantor étant
d’unicité, cf. [5]) qui n’est pas de résolution spectrale.

§2. Démonstration du théoréme 2.

La démonstration de ce théoréme se fera en deux temps:

— un premier lemme montrera que si il existe une fonction ® € L*(I") et une
fonction a e IT) telles que || e ™ @ | (1 + |u|) soit intégrable (en la variable
réelle u), alors (®) n’est pas de résolution spectrale.

— nous construirons ensuite explicitement, lorsque ® vérifie les hypothéses du
théoréme 1, une fonction a e L}(T'), qui avec @ vérifie les hypothéses du lemme
précédent.

2.1. LemME. 1. Soit T un groupe localement compact, supposons qu’il existe
une mesure bornée a e M(T'), et une fonction ® e L*(I), telles que

+ 00
2.1 f fe™ - ®| o1+ |ul)du < + 0
-

alors il est possible de trouver une constante créelle, telle qu’en posant b = a + ¢d
(6 étant la mesure de Dirac a I’élément neutre de T), la fonction de L™(T)
¥ = (I3 Qudu vérifie

2.2) b-¥ # 0
(2.3) b-b-¥ =0

(®) n’est pas de résolution spectrale.

Démostration. Remarquons d’abord que la relation (2.1) est aussi vérifiée en

remplagant a par b, car e™ = ™% "™ et ¢"*est un nombre de module 1.

Soit F(x) une fonction de la forme

249 F(x) = P(x)e™™,

ol P est un polyndme; alors F(u) (transformée de Fourier de F(x)) décroit
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a Pinfini comme |u|"e™ n étant le degré de P). Cette fonction étant entiére,
nous pouvons définir la mesure bornée F(b). D’autre part, la fonction de R
a valeur dans P’espace de Banach M(T'), e F(u) est continue et de norme
intégrable ([le™ |, < e'?I1), elle est donc intégrable; soit I son intégrale,
et g un caractére de I', on a:

1,8) = fj:@ Wb oS Bu)du = f ' 00e Wb K u)du

-0

qui est égal d’aprés la formule d’inversion de Fourier & 2nF({b,g)). Nous avons
donc:

(2.5) F(b) =1/2n f e F(u)du

[eo]

ue'™. @ est une fonction a valeur vectorielle dans L®(I') continue et de norme
intégrable, donc intégrable dans L*(T), soit

+ o0 .
2.6) ¥ = f (™ - ®yudu, ona:
-
+
-0

o + i
F(b)- ¥ =1/2n f e “f(u) du f (™ - O)dt.

Or la fonction de R? dans L*(I), (u,1) % ¢10+0b . @ est continue et sa norme est
majorée par le produit | e ™| ;e -® .., donc ofu,) F(u)t est intégrable, et
d’aprés Lebesgues-Fubini on a:

F(b)- ¥ =1/2n f (e . @) F(u)tdu dt
R2

soit en posant v = u -+ ¢ et en appliquant encore Fubini

1/2n+ 0

2.7 F(b) ¥ = (e ®)(F * f)(v)dv
-
ol f(v) =v.
1) Prenons F(x) = xe ™™, F(u) = u ¢™*/*(/x/2) et son produit de convolution
avec la fonction f est une constante égale & 2z. Donc
+ 00
bre™ ¥ = f (™ D)du,
-
soit:
2 + oo 0
bee™- ¥ =f (e "™ - ®)e"“du.
-

Mais e - ® étant une fonction continue non nulle a I’origine (® étant supposée
non nulle), elle ne peut pas étre orthogonale a toutes les fonctions €™ pour ¢ réel
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quelconque, donc il est possible de trouver ¢ tel que b+ e’ ™®

nul ce qui entraine:
2.2) b-y#0.

2) Prenons maintenant F(x) = x%¢™*", sa transformée de Fourier est
Fuy = [n[2(u?/4 - 1)¢ 1 dont le produit de convolution avec f est nul, donc
b-b-e ™ - West nul, et en convolant par e®’, ona:

(2.3) b-b-¥=0.

* © ¥ ne soit pas

3)b - ¥ étant différent de zéro, il existe une fonction ee L'(T) telle que
&+ bW #0; par contre (2.3) entraine que I’idéal engendré par e b - ¢ - b dans
L{I) est orthogonal 4 ¥, donc que les caractéres de I' contenus dans (¥) sont
orthogonaux 2 ¢- b - ¢ b et donc & ¢+ b: ceci entraine alors que ces caractéres
ne peuvent pas engendrer (\P).

Enfin ¥ appartenant 4 (®), (W) estinclus dans (@) et:

(D) n’est pas de résolution spectrale.

2.2. LeMME 2. Soit ® un élément de L™(T), vérifiant les hypothéses du
théoréme 2, alors il existe une mesure bornée a sur ', telle que:

@.1) I e - @t +udu < + o,

Démonstration.. Nous allons construire cette mesure ¢ en choisissant con-
venablement une suite (y,) d’éléments de T', et en prenant

(2.8) a= Zk k™2(1/20) (8, = 8-4)

ousi ye I, 6, note la mesure de Dirac au point 7.

Nous serons amenés, pour vérifier que notre mesure a satist;ait g.l) a utiliser des
majorations des coefficients du développement de e “/? ¢"~% Den somme de
mesures discrétes de masses 1, ¢’est A dire les coefficients du développement en

série de Fourier de e™ '™ "*#) que nous allons donner maintenant.

2.2.1. Majorations de fonction de Bessel. Soit y un élément de I, nous
noterons par r(y) 'ordre de y, c’est a dire le plus petit entier positif n tel que
n -y =0. La fonction &*!™"#> se développe en fonction uniquement des carac-
téres de G appartenant au sous-groupe engendré par y, et dont les coefficients
de ce développement se calculent en se plagant dans le sous-groupe engendré par »,
aulieu de I', et son dual au lieu de G, ils ne dépendent donc que de 1’ordre de .

Nous avons les développements suivants:

2.9) gm0 = ¥ Py (u){my, 8>
m eR(r)

(2.10) e WOV = X P, (4,

me&R(r)
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en posant R( + o) = Z = groupe des entiers
R(ry=Z[rZ si r<+ o

(par abus de langage, nous noterons par la méme lettre un élément de Z/rZ et la
classe des entiers modulo r correspondants).
Nous noterons P, ., par P,; les coefficients sont donnés par les formules:

1 2 lusinx —inx
P,,(u)=2—n- . e e dx

k=r—1
Pm,r(u) = Z (1/7‘)8 iu sin(2nk/r) e --i2nvk/r, vem.
k=0
Soit C le tore A une dimension, dont le dual est Z, le sous-groupe de C formé
par les ™" a pour dual Z/rZ; en calculant le développement de ¢*** dans le

groupe C aux points x = 2rk/r on a:

eiu sin(2nk/r) _ Z Pv(u)e i2nvk/r

veZ
— 2 [ E Pv(u)] eiZu’kv}'l'
meZlrZ vem
d’olt la formule:
2.11) P, (u)y= X P,u).

YeEm
Nous avons les majorations suivantes:

(2.12) | P, (u)| 1 quel que soit u, r et meR(r),

majorations qui sont évidentes d’aprés les formules du calcul explicite de ces
coefficients.

La dérivée seconde de e est — e """ (u%cos?x + iucosx) dont les
coefficients de Fourier sont majorés par (Ju|? + |u|), or ces coefficients sont
P,/n?, donc on a:

(2.13) | Puw)| < (Ju|* + |u])/n? pour n 0.

iu* sinx

On tire de cette majoration deux conséquences immédiates dont nous aurons
besoin:

(2.14) z )|P,,,,,(u)|§ 2 |Pw)| S 1+ A(ul* +|u)).
meR(r neZ

Soit d un nombre entier positif, soit m ¢ R (r), nous dirons que mest supéreur
en valeur absolue & d et on note |m| > d si quel que soit vem|v| > d. D’autre
part, |m| =< d notera la proposition contraire de |m >d. Alors pour R>0
donné, quel que soit r, fini ou infini, et quel que soit u| < R, pour tout ¢>0
donné, il existe un entier positif d tel que:
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(2.15) r |P, ()| <e

|m|>d

Enfin quel que soit r= 2, nous avons si 1 ¢ m (m élément de R(r))

(2.16) | Py ()| | Po(u)| * E_ ; | P(u)|.

Comme nous avons de plus Py(0) =1, et P, (0) =0, il existe un nombre positif
&, tel que | Py(u)| <|Po(u)] si |u| < &, donc l'inégalité (2.16) est valable pour
tout élément m de R(r) mais en imposant cette fois-ci la condition Iul <&,

Considérons alors Ia somme XM >3 | Pv(u)|: pour ]v| 2 3, les deux premiéres
dérivées de P(u) a 'origine sont nulles, et la séric des modules des dérivées
troisiémes des P, (u) est une séric normalement convergente (série des coefficients
de Fourier de — i sin’x ¢*"*); nous avons donc pour |u| < 1:

Y |P{w)| <|u|*B (ol B est une constante positive).
vl 23

Les dérivées a Porigine de Py(v) et P,(u) sont nulles, la dérivée seconde en
u = 0de Py(u) est — 1, et celle de P,(u) est 1/4; comme|Po(0)|+ X,,, , 2| PO)| =1,
il existe un nombre a < 1, et un nombre £, 0 < £ < 1 &, tels que:

(2.17) | P (u)| < & pour r 2 2, m quelconque, et & < |u| < 2¢.

2.2.2. Estimée de normes par régularisation.

Soit (¢,) 1a suite d’unités approchées de L(I"), nous devrons déduire une majora-
tion de normes de certaines expressions dépendant de @, a partir de majorations
sur les normes d’expressions analogues olt @ est remplacé par 1’'une de ses régu-
larisés @ - ¢; (@ - ¢; sera toujours noté dans la suite par @,); c’est pourquoi
" nous démontrerons ici le lemme suivant:

LEMME 3. Soit (p;) une suite d’unités approchées de LNT'), soit ®eL™(I)
et supposons que en tout point y de I" on ait

lim sup | ®,(y)| S 1
alors H d)wH £1

Démonstration. Soit o une fonction continue 4 support compact KT, ¢; - a
converge, en norme dans L'(T), vers a: en effet, soit V un voisinage compact
de I’élément neutre 0, et soit @y les restrictions & V des fonctions ¢;, | ¢, — ¢ |
tend vers zéro quand i tend vers Vinfini, donc (¢; — @) - a converge vers 0 dans
INT), et g, - « converge dans L,(I') en norme vers a{{g;y - o} étant un ensemble
de fonctions uniformément équicontinues & support dans un compact fixe, con-
vergeant ponctuellement vers «).

La norme dans L°(I') de @ est la borne supériere pour toutes les foctions «
continues a support compact de norme 1 dans LY(T) de | {®,a )l; de plus
{D, o) est la limite de {®;,«), quand i tend vers ’infini, car
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(O a) = (0, 2)(0) = (® - ¢~ 2)(0) (ot & désigne @(y) = a( — 1))

et ®, - « converge dans L(T) vers a.

Notons alors S,(g) Pensemble des yeI tels que quel que soit i p; (D,»(y)| <l+e
(e > 0 arbitrairement donné). La réunion des S,(¢) est tout I'. Soit une fonction
continue a support compact de norme 1 dans L'("), la mesure de K N (S,(e)
tendant vers 0 quand p tend vers V'infini, il existe p, tel que I'integrale de o sur
S,,(e) soit inférieure & &. Nous avons:

@2y~ [ oM+ [ o0y
Sro(e) Bro(en
ol la premiére intégrale peut étre majorée, en module par le sup de |<IJ,.| sur S,
et la deuxiéme par ¢ multipliée par | ®, |, (qui est inférieure a || @ ,,); donc si
i 2 po» ‘(Q,,a)l <1l+4+e(l+ H<I>”w). Comme <{®;,x> tend vers {(®,a), nous
avons [{®,a)| < 1, et donc [ @], S L.

2.2.3. Construction de la suite (y,).
Soit (1, ,) une double suite de nombres positifs tels que:

2

(2.18) [TA+n)-1<e™

kzg
nous savons que quel que soit r, fini ou infini, il existe (cf. (2.15)) pour tout ¢,
une suite (d,(k)) d’entiers croissants tels que:

(2.19) Y |pudw)|<m, pour|u|<gq,etquel quesoit r,
im| >dg(k)
nous prendrons les entiers d (k) croissant en fonction de g également.
Soit alors &(k) = | ® [|w/8% [ick+1di+s(i) et &0) = | @ |, nous noterons plus
rapidement
Ay = Aa(k)(q): {‘Pi})

On prend y, de telle fagon que ses multiples non nuls jusqu’a ’ordre 24,(1)
n’appartiennent pas a B;.

On prend alors y, de telle fagon que ses multiples non nuls jusqu’a ’ordre
2d,(2) n’appartiennent pas a la réunion prise pour In,l =< 2d,(1) de (B, + n;yy).

On prend alors y, tel que ses multiples d’ordre inférieur (en valeur absolue) a
2d,(p) n’appartiennent pas & la réunion pour | n;| £ 2d,(i)eti < pde(8, + X, ny).

Cette construction est possible car tous les B, possédent la propriété (P). Nous
noterons r, = r(y,) = ordre de y,

Z = le groupe des entiers si r, = + o

Ry = R(ro) = {Z/rkZ si 1 < + o0.



52 M. FILIPPI [March

Nous noterons D(q) I’ensemble des éléments 6 de D tels que (k) =0si k< gq
et F(q) ensemble des éléments de D(q) de ke -composante inférieure en valeur
absolue a d, (k) pour tout k (l()(k)l < d(k)).

Soit N un entier positif plus grand que g, nous noterons D(g, N) et F(g, N) les
ensembles des restrictions aux k < N des éléments de D(g), respectivement F(g).

Un entier g étant fixé, quel que soit ye T, il y a au plus

(2.20) 47 TT d(k)
k<p

éléments 0(k) de F(q) tels que I’élément y + X, 0 (k) y, € A,. En effet la différence
de deux tels éléments doit appartenir & B, et est de la forme y’ = T.m7, (ob ona
posé n, = 0,(k) — 0,(k), 6, et 6, étant deux éléments de F(q)) avec n, nul pour
k=Zqet |nk| < 2d,(k). Nous aurons le dénombrement (2.20), si nous montrons
que n, est nul pour k> p: supposons qu’il existe des n, non nuls avec k> p,
et soit ny celui qui a le plus grand indice (alors N est supérieur & p, et aussi a g, car
n, =0si k £ q). Nous aurions alors

T = y'€B,c By (car N> p) et

(2.21) k

nyYn € (BN -X nk?k)
k<N

or | n,| < 2d,(k), et comme N > g, | n,| < 2dy(k), ce qui est en contradiction avec
(1.21) d’aprés la construction de notre suite (y,).

2.2.4. Majoration de ”e iua, (I>”w.

Nous noterons par 7(y)® la fonction translaté de ® de y, c’est a dire 6, @

(2.22) e™ = ] - [Z Pm,rk(k"zu)émn]

k meRx

olt [] - représente un produit de convolution.

2.24.1.

a est la somme d’une série convergente, soit N un entier, notons par ay la somme
des N premiers termes de cette série, et ry la somme des autres termes; pour u
donné, il existe un entier N, tel que “ ry [l (<1 l u| pour tout N > N,

Choisissons alors N supérieur & la fois & Ny, et & /|u|/2¢ ol £ est le nombre
intervenant dans la majoration (2.17) (1'utilité de prendre N > ./ [u’/Zf sera vue
dans 2.2.4.3.). Posons

a=ay+ry

e'iua= e “luay, e iury

etona:
(2.23) [ et~ |, <e.
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2.2.4.2,
Prenons ’entier g tel que ¢3 < IuI <(q + 1)3, alors pour tout k>gq, on a
(2.29) |k ~%u| < q.
Nous allons décomposer alors e **"de la fagon suivante:
225 L= T1-[Z Puntk 0]
k<gq meRy
2.26) M = T [ Z Puntk 03,
g<k<N meRy

(N étant au moins de I’ordre de !u ]”2, et a €tant de ’ordre de ] u]”s, dés que ]ul
est assez grand on a N > g, ce qui donne un sens a notre décomposition).
Nous savons d’aprés la majoration (2.14) que quel que soit ron a:
L |P..w|<1+A(v)?+]o)
m e R(r)
donc
21 L Ji<(0+ A(lul + lulpi< cexp(p|ul|'® Log|u|)

(c et p étant deux constantes positives convenablement choisies.)
Et nous avons également:

(.29 e < [ | L,y | My 0.
c’est cette derniére norme que nous avons maintenant & majorer.

2.2.4.3.
Nous avons

M,, ®= T] [ z Pm,,k(k‘zu)am]

g<k<N m e Ry

d’ot, en développant ce produit:

(2.29) My 0= I [ HNP¢(k),,k(k‘2u)r(k2«p(km)dr]'

qeD(g,N)L g<k<
Posons alors:

(2.30) Sn= X [ I P,,(,()‘,k(k“zu)r( [E(p(k)yk)(DJ
oefl(q,N)L g<k<N \ k J

e Ty= T | Pua®ue( Eaon)o|
ae E{(g,N) L g>k<N k

ol E(g, N) est le complémentaire de F(q, N) dans D(g, N); alors
2.32) M,y ®=S, v+ T, .

Pour majorer la norme de S, , nous allons trouver une majoration indépendante
de i (dés que i sera assez grand) du module de
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e sm=_ T | [[Pual006-E oo |
¢ € F(q,N) g<k<N k

(ot @, est @ - ¢,); cette majoration ne dépendant, de plus, pas de 7y, en utilisant

le lemme 3 nous obtiendrons une majoration de la norme de S, y dans L(T).

Soit yeI" donné, soit ¢ un élément de F(gq, N), soit p, = p(p,7) I'entier tel que
y — X, o(k)y, appartienne a Agen -+ Ape_y, il existe un indice i, = i(¢,7y) tel que
pour tout i > iy, Oy — X, p(k)y,) soit compris entre &(p,) et &(p, — 1). F(g,N)
est un ensemble fini, donc quel que soit i supérieur a tous les i, et quel que soit ¢
appartenant & F(q, N), ®(y — X, (k)y,) est compris entre &(p,) et &(p, — 1).

11 existé an plus 4, [ [i<, d, (k) éléments de F(g, N) tels que y- X, o(k) 7, soit
dans A,N--4,_ donc tels que @y — 2, ¢(k)y) soit compris entre e(p) et
gp—-1).

Soit s(u) le nombre d’entiers k tels.que k> g, et & < |k'2ul < 2¢ (cf. majo-
ration (2.17)), nous pouvons majorer le produit [, <x<x Pogy.r(k™>4) par o*®
N a été choisi supérieura ,/ |7|ch. 2.2.4.1),donc tous les k tels que I k™%u | <2¢
sont inférieurs & N, et s(u) est de "ordre de ‘u| 112 car il est compris entre so()
et so(u) — g (ou s¢(u) et le nombre d’entiers vérifiant & < |k'2u| < 2¢, ce qui
donne so(u) de I’ordre de |u|"/* alors que g est de 'ordre de |u| '/~

Nous avons alors:

|| <o X e(p)a? k[] dk)< @] @], 4( ) 1/2")

soit | S| < crexp(— B |u]?)

oll ¢, et f§; sont des constantes positives bien choisies; et donc
(2.34) I Sonlleo < crexp(— By |u|'?).

2.24.4.

Il nous reste alors a majorer la norme de T, . :

Scit G(g,N) I’ensemble des fonctions Y(k) de D(q,N) telles que (k) soit ou
nul ou supérieur en valeur absolue 3 d (k). Alors tout élément 6(k) de E(q, N) se
décompose en somme d’une fonction (k) de F(g, N) et d’une fonction (k) de
(g,N), cette décomposition étant unique si on impose de plus la condition
d’orthogonalité ¢(k)y (k) =0, on prend pour cela

= g(k) si [0(k)|< d (k)
(k) {= 0 sinon.
Yl = 9_(k)— @(k).

Nous décomposerons toujours les éléments de E(g, N) de cette fagon.

Nous allons alors calculer la somme (2.31) qui donne T,y en regroupant les
termes. correspondant aux fonctions 6(k) ayant méme composante sur F(g,N),
¢(k), et en utilisant la formule
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@39 T1 Paon6™0) =] T1 Puoa®?0)|[ T Punnth™0 |
g<k<N @(k)+#0 o(h)=0

g<k<N
nous avons:

(2.36) T,n= X Il P.m,.,,(k“zu)S(w)]

9€G(q,N) [ *(k)#0

ol S(y) est défini par:
2.37) SW)= X [ 1 P.(h),,h(h‘zu)r(zw(k)yk+ Eq»(hm) <1>]

eeF(g,M L ¥(h)=0
¥ =0 g<h<N

S(y) peut également s’écrire:
s =(Zutom)[ (I Prornh X Enthnao) |

9€F(q,N) y(B)=0
oy =0 g<h<N

Nous majorerons alors ce terme comme nous avons majoré la norme de S, y
dans2.2.4.3., avec la différence que nous ne pouvons ici majorer la valeur absolue
du produit

IT Pogymih=?u)

¥(h)=0
g<h<N

que par 1, et que la sommation ne portant que sur une partie de F(g, N), notre
méthode de majoration de la norme de la somme de translatés de @, sera a fortiori
valable; nous obtenons ainsi le résultat:

(2.38) | |56 | <8] @] -

Enfin nous avons

)) H P w(k),r,.(k_zu)]
¥€G(g,N) Lyikyro
=[ M n+ H()Ipm,,k(k_zu)l]]—l

q<k<N {m] >d, (k
etd’apréslechoixdeq (] q'2u| < q),etlesinégalités (1.18) et (1.19), nous obtenons

(2.39) " T“,"‘,0 < 8||(I)||00 e " < e exp(— ﬂ2|u|2/3).

2.2.4.5.
La majoration de la norme de T, y est négligeable devant celle de la norme

de S, y, et nous avons donc pour " e M. ||OO une majoration du type suivant:

(2.40) Je* - @|o< Cexp(B|u|'Log|u| — B'|u|"?)

ce qui entraine, le terme en |u‘ 2 giant d’ordre supérieur au premier que lin-
tégrale
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+
f le™: @01 + | u|)du
converge.

2.3. Démonstration du théoréme 2'.
Ce théoréme n’est qu’un affaiblissement du théoréme 2, car nous avons la
propriété:

(2.41) A,(D) o A4,,(D).

En effet, ® étant donné, soit y€ A4,,, et soit V' un voisinage arbitraire de 7,
soit W un voisinage de ’origine de T, tel que W + W « ¥V — y; d’aprés la con-
vergence des g; vers &, il existe i, tel que pour i = iy, la norme dans L'(T) de o,
restreint au complémentaire de W soit inférieure 3 ¢/ | @[ ; comme ye 4,, il
existe un i = i, tel que l(p,- . <D|(y) > 2e, et @; - @ étant continue il existe une
fonction continue « 4 support compact inclu dans W, de norme 1 dans L'(T),
telle que |cx * @; * ®](y) > 2¢. Alors (la restriction de g; au complémentaire de W
étant de norme inférieure a ¢/ | @ | ,) la fonction B, produit de convolution de o
et de la restriction @; & W, est continue, a son support dans V—1y, et on a
|B-®|. (y)>¢, ce qui entraine que | @] o>e Ceci étant vrai quel que
soit le voisinage V de y, dO(y) > .

§3. Démonstration du théoréme 3.

Soit ® un élément de Lo(T), pour tout ¢ >0 donné nous noterons A,(®) le
plus petit fermé tel que la norme de ® restreint au complémentaire de 4,(®) soit
inférieure 4 &. Quand le groupe I'" a une base dénombrable de voisinage de I’origine,
les ensembles ainsi définis sont les 4,(®).

Nous poserons B,(®)= A, (D) — A(D), et la propriété de d’appartenir a
L3 () se traduit par le fait que les ensembles A,(®) et B,(D) sont compacts. Nous
démontrerons alors un lemme, qui, avec le théoréme 2’ démontre le théoréme 3
dans le cas ou I a une base dénombrable de voisinage de I’élément neutre.

3.1. LemMme 4. Dans un groupe localement compact non compact T, tout
compact posséde la propriété (P).

Nous allons utiliser le résultat classique suivant:

Soit T’ un groupe localement non compact abélien, et soit U un voisinage
compact symétrique de I’unité.

Soit I'’ le sous-groupe engendré par U, alors I'' contient un sous-groupe discret
D engendré par un nombre fini d’éléments tel que I'’/D soit compact.

Nous allons traiter les deux cas suivants:

a) T contient un élément y, d’ordre infini qui engendre un sous-groupe discret.

b) Si on n’est pas dans les conditions du a), Dest un groupe compact (engendré
par un nombre fini d’éléments d’ordre fini), donc aussi I''. I'' étant engendré par un



1965} VARIETE DE NON-SYNTHESE SPECTRALE 57

voisinage de ’origine, il est ouvert donc I'/T”" est un groupe discret, soit H, dont
tous les éléments sont d’ordre fini.

La réunion d’un nombre fini de compacts étant compact, nous allons démontrer
que pour un compact K et un nombre entier positif arbitraire N il existe un
élément y de T tel que tous ses multiples non nuls d’ordre n avec !n, < N, soient
hors de K.

a) Soit (7o) le groupe y, * Z engendré par y,; ou bien K ne rencontre pas (y,)
et le probléme est résolu en prenant y = y,, ou bien K rencontre (y,) et K N (y,) est
compact donc fini; soit alors A le plus grand des entiers tels que 4°y,€ K M (yo),
il suffit de prendre pour y I’élément (|Al +1) 7.

b) 'image K’ de K par la projection I' > I'/T"' = H est compacte donc finie, si
te'/T' est tel que tous ces multiples non nuls et d’ordre |n| < N ne sont pas
dans K’, un représentant y dans I" de la classe t répond a la question. 1l suffit de
traiter le probléme dans le cas d’un groupe I' discret dont tous les éléments sont
d’ordre fini.

Soit K une partie finie d’un groupe discret infini; soit N un entier positif donné,
supposons que pour tout élément yeI', 3n < N tel que ny#0 et nyek; en
d’autres termes, soit K, I’ensemble des yeI tels que ny # 0 et nye K: nous
supposons que I' = U,,é,vK,,. Alors soient y; et y, deux éléments de K, avec
ny, = ny, leur différence est d’ordre inféricur ou égal & n, et appartient éU,, <vKs,
donc appartient & un K, avec p < n. Si nous supposons que tous les K, sont
finis pour p < n, comme K est aussi fini, K, est fini; or K, = K est fini dans par
récurrence K, est fini quel que soit p; LJ,,§ ~ K, est donc fini, ce qui est contraire
a I’hypothése.

3.2. Cas des bases non-dénombrable de voisinages. Lorsque I' n’a pas de base
dénombrable de voisinage de 1’origine, il nous faut reprendre, pour une fonction ®
appartenant 3 Lg (I') la démonstration du lemme 2, qui s’énonce sous la forme
suivante:

LeMME 5. Soit T un groupe localement compact, ® un élément de Ly (), il
existe une mesure bornée a sur T, telle que

+ o0
f ”e ""“-(I)”w(1+|ul)du< + 0.

Nous utiliserons ici, pour désigner les quantités analogues a celles intervenant
dans le lemme 2, les mémes notations (aucune confusion n’étant possible).

Nous définirons une suite (y,) d’éléments, de I', comme dans 2.2.3., les ensembles
A(®) jouant ici le r6le des ensembles A4, (®,(¢;}) du lemme 2 (nous noterons
encore A et By pour A,4,(®) et B, (®). Nous prendrons alors pour mesure a la
mesure

a= X k™*1)2i)(5, —4_,)
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Nous allons alors majorer la norme ||e™ - ® |, en procédant comme dans
2.2.4: 1a suite d’unités approchées, et la définition des ensembles 4, n’intervenaient
que dans les deux majorations (2.34) et (2.38) oli les quantités S, y et S(¥) sont
définies par (2.30), et (2.37); nous allons montrer que, sous nos nouvelles hypo-
théses, ces majoratios sont encore valables.

Soit yeT, et soit ¢ un élément de F(g, N): notons p, = p(y, ) 'entier tel que
y — 2 @(k)y, appartienne & A, N ---A,_, . Il existe alors un voisinage V(y, ¢) de
tel que la norme de la restriction & V(y, ¢) de 7( 2, o(k)y)® soit comprise entre
&(p,) et &(p, — 1). Soit V' (y) ’intersection des voisinages V(7, ¢) quand ¢ parcourt
I’ensemble fini F(q,N).

Nous majorons comme dans 2.2.4.3. le module produit | [T,<x<n Pocy,n (k™ *t)|
par a*® (a < 1, et s(u) de 'ordre de |u|'/*); comme il existe au plus 4° [, do(k)
éléments ¢ de F(g,N) dont le p, soit égal & p, nous obtenons que la norme de la
restriction & V(y) de S, y est majorée par 8 | ® | ,,™; cette majoration ne dé-
pendant pas du point y, majore la norme H SyN ||w, d’ol la majoration (2.34).

Les termes S(y) se majorent comme S, y, mais en majorant le coefficient

-2
P cp(h),r;.(h u)

Y(h)=0

g<k<N

en module par 1; ce qui nous donne bien la majoration (2.38).

§4. Cas particulier du groupe Z".

4.1, Démonstration du théoréme 4.

Ce théoréme se déduit du théoréme 2 i ’aide du lemme suivant:

LEMME 6. Tout ensemble de densité inférieure nulle dans Z", posséde la
propriété (P).

Nous pouvons donner une définition de la densité inférieure d’un ensemble
discret B dans R" de la fagon suivante:

On appellera “‘densitéinférieure’’ de Bla limite inférieure quand x tend vers + o
du rapport |B NJ, | (2x)™", ol J, est le cube des points de coordonnées en valeur
absolue inférieure ou égale a x, et }A[ est le nombre d’éléments de A, si A est une
partie de R".

Si nous injectons Z" dans R", les deux définitions de densités inférieures d’un
sou-sensemble de Z" coincident.

La propriété, pour un sous-ensemble discret de R” d’étre de densité inférieure
nulle est évidemment stable par translation et par réunion finie. Soit x un nombre
réel, non nul et B un sous-ensemble discret de R”, nous noterons xB I’ensemble
des éléments xb ol b parcourt B; la propriété d’étre de densité inférieure nulle
est aussi stable par ‘‘multiplication’’ que un réel non nul x.

Soit alors B un sous ensemble de Z" de densité inférieure nulle, N un entier, la
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réunion pour tout p £ N du “‘quotient’’ par p d’un nombre fini de translatés de B
est dans R" de densité inférieure nulle, donc ne peut pas contenir Z; donc B
posséde la propriété (P).

4.2. Démonstration du théoréme 5.

Pour démontrer ce théoréme, nous utiliserons la mesure dF sur C, ol F est la
fonction de Lebesgue (Zygmund, Trigonometric series, 2éme édition, vol, 1,
p. 196); cette mesure a pour support 1’ensemble de Cantor; I’ensemble de Cantor
est isomorphe, en tant qu’espace topologique au produit d’une infinite dé-
nombrable de Z/2Z, et la mesure dF considérée n’est autre que la transportée
par cet isomorphisme de la mesure de Haar de ce groupe produit. La transformée
de Fourier de dF est la fonction de L*(Z)

@.1) ®(n) = (- 1)"(2m) " ﬁ cos(2n37*n)
k=1

qui n’appartient pas a Lj (Z)(car ®(3n) = ®(n)), et dont le spectre est 'ensemble
de Cantor. Le théoréme résulte du lemme suivant:

LeMME 7. Pour tout &> 0 donné, soit A I'ensemble des entiers tels que,
I(D(n)l > ¢, et soit B, = A, — A,, B, est de densité nulle.

Nous utiliserons I’écriture des entiers dans la base 9. Soit n un élément de A,
(ou ¢ > 0 donné), soit

(4.2) 2" = apap_l . alao

I’écriture dans le systéme a base 9 de 2n, la fonction ®(n) s’écrit:

i=p 0 0
(4.3) ®(n) = [ cos(mo; oy -+ 0p) [T cos2nn3™** D [T cos(2nn3 ~2").

i= k=0 h=p
Donc n ne peut appartenir & A4,, que si le premier produit est déja de valeur
absolue supérieure 2 ¢; soit N(e) le plus petit entier tel que |cos(n/9)[¥ soit
inférieur A ¢, si n appartient & 4, Pécriture dans la base 9 de 2n ne contient au
plus que N(e) chiffres différents de 0 et 8.

Soit R un entier, posons

(4.4) B.r=B,N[-9% +9%].
Si n appartient 3 B, z,ona
(45) n=n;—n, ol n, etn, apparticnnenta A4,.

(46) n=n,—n, ol |n| et |n,| sont les restes de la division par 9%*+!

de |n1| et I"Z'
(4.5) provient de la définition de B,, et (4.6) du fait que nous supposons
ne[ —9% + 9%]. De plus 2n, et 2n, ont dans leurs &critures en base 9 au plus
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N(e) chiffres différents de 0 et 8, donc 2n; et 2n, ont dans leurs écritures en base 9
au plus N(e) + 1 chiffres différents de O et 8. Le nombre d’¢léments de B, p sera
donc inférieur au carré du nombre ng(e) entiers appartenant a [ — 981, 4 98*1],
dont P’écriture en base 9 contient au plus N(g) + 1 chiffres différents de O et 8.
Or nous avons:

N(e) + 1\ r-Ne)o N +1
@47 ng(e) < 2 ( R+1) 2R-N@g

p

Le nombre d’éléments de [ — 9%, + 9R] tend plus vite vers I'infini que ng(e)?
donc B, est de densité nulle.

ol ( ") est le nombre de combinaisons de p éléments pris n & n.
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